Το μονοπώλιο είναι ένα επιτραπέζιο παιχνίδι στο οποίο οι παίκτες μπαίνουν στον καπιταλισμό σε δράση. Οι παίκτες αγοράζουν και πωλούν ακίνητα και χρεώνουν το ένα το άλλο. Παρόλο που υπάρχουν κοινωνικά και στρατηγικά τμήματα του παιχνιδιού, οι παίκτες μετακινούν τα κομμάτια τους γύρω από το τραπέζι, κυλώντας δύο τυποποιημένα ζάρια με έξι πλευρές. Δεδομένου ότι αυτό ελέγχει τον τρόπο με τον οποίο οι παίκτες κινούνται, υπάρχει επίσης μια πτυχή της πιθανότητας για το παιχνίδι. Με το να γνωρίζουμε μόνο λίγα γεγονότα, μπορούμε να υπολογίσουμε πόσο πιθανό είναι να προσγειωθούν σε συγκεκριμένους χώρους κατά τις δύο πρώτες περιστροφές στην αρχή του παιχνιδιού.
Τα ζάρια
Σε κάθε στροφή, ένας παίκτης ρίχνει δύο ζάρια και στη συνέχεια μετακινεί το κομμάτι του / της με πολλούς χώρους στο τραπέζι. Επομένως, είναι χρήσιμο να αναθεωρήσετε το πιθανότητες για τροχαίο δύο ζάρια. Συνοπτικά, είναι δυνατά τα ακόλουθα ποσά:
- Ένα άθροισμα των δύο έχει πιθανότητα 1/36.
- Ένα άθροισμα των τριών έχει πιθανότητα 2/36.
- Ένα άθροισμα των τεσσάρων έχει πιθανότητα 3/36.
- Ένα άθροισμα των πέντε έχει πιθανότητα 4/36.
- Ένα άθροισμα έξι έχει πιθανότητα 5/36.
- Ένα άθροισμα επτά έχει πιθανότητα 6/36.
- Ένα άθροισμα οκτώ έχει πιθανότητα 5/36.
- Ένα άθροισμα των εννέα έχει πιθανότητα 4/36.
- Ένα σύνολο δέκα έχει πιθανότητα 3/36.
- Ένα σύνολο έντεκα έχει πιθανότητα 2/36.
- Ένα άθροισμα δώδεκα έχει πιθανότητα 1/36.
Αυτές οι πιθανότητες θα είναι πολύ σημαντικές καθώς συνεχίζουμε.
Ο μονοπωλιακός πίνακας παιχνιδιών
Πρέπει επίσης να σημειώσουμε το παιχνίδι του Monopoly. Υπάρχουν συνολικά 40 χώροι γύρω από το gameboard, με 28 από αυτές τις ιδιότητες, τις σιδηροδρομικές γραμμές ή τα βοηθητικά προγράμματα που μπορούν να αγοραστούν. Έξι χώροι περιλαμβάνουν την κατάρτιση μιας κάρτας από τους πασσάλους Chance ή Community Chest. Τρεις χώροι είναι ελεύθεροι χώροι στους οποίους δεν συμβαίνει τίποτα. Δύο χώροι πληρωμής φόρων: είτε φόρος εισοδήματος είτε φόρος πολυτελείας. Ένας χώρος στέλνει τον παίκτη στη φυλακή.
Θα εξετάσουμε μόνο τις δύο πρώτες στροφές ενός παιχνιδιού του μονοπωλίου. Κατά τη διάρκεια αυτών των στροφών, το πιο μακρινό θα μπορούσαμε να φτάσουμε στο τραπέζι είναι να κυλήσουμε δώδεκα δύο φορές και να μετακινήσουμε συνολικά 24 διαστήματα. Επομένως, θα εξετάσουμε μόνο τα πρώτα 24 κενά στο διοικητικό συμβούλιο. Προκειμένου οι χώροι αυτοί να είναι:
- Μεσογειακή λεωφόρο
- Κοινοτικό στήθος
- Βαλτική λεωφόρος
- Φόρος εισοδήματος
- Ανάγνωση σιδηροδρόμων
- Oriental Avenue
- Ευκαιρία
- Λεωφόρος Βερμόντ
- Φόρος του Κοννέκτικατ
- Απλά επισκεφθείτε τη φυλακή
- St. James Place
- Ηλεκτρική Εταιρεία
- State Avenue
- Βιρτζίνια
- Pennsylvania Railroad
- St. James Place
- Κοινοτικό στήθος
- Λεωφόρο Τενεσί
- Νέα Υόρκη
- Δωρεάν στάθμευση
- Λεωφόρος του Κεντάκυ
- Ευκαιρία
- Τη λεωφόρο Indiana
- Illinois Avenue
Πρώτη στροφή
Η πρώτη στροφή είναι σχετικά απλή. Δεδομένου ότι έχουμε πιθανότητες να κυλήσουμε δύο ζάρια, απλώς τα ταιριάζουμε με τα κατάλληλα τετράγωνα. Για παράδειγμα, ο δεύτερος χώρος είναι ένα κοινοτικό τετράγωνο και υπάρχει 1/36 πιθανότητα να κυλήσει ένα άθροισμα των δύο. Έτσι, υπάρχει 1/36 πιθανότητα προσγείωσης στο κοινοτικό στήθος στην πρώτη στροφή.
Παρακάτω είναι οι πιθανότητες προσγείωσης στους ακόλουθους χώρους στην πρώτη στροφή:
- Κοινοτικό στήθος - 1/36
- Βαλτική λεωφόρος - 2/36
- Φόρος εισοδήματος - 3/36
- Reading Railroad - 4/36
- Oriental Avenue - 5/36
- Ευκαιρία - 6/36
- Λεωφόρος Βερμόντ - 5/36
- Φόρος του Κοννέκτικατ - 4/36
- Μόνο επίσκεψη φυλακή - 3/36
- St. James Place - 2/36
- Ηλεκτρική Εταιρεία - 1/36
Δεύτερη στροφή
Ο υπολογισμός των πιθανοτήτων για τη δεύτερη στροφή είναι κάπως πιο δύσκολος. Μπορούμε να κυλήσουμε συνολικά δύο και στις δύο στροφές και να φτάσουμε τουλάχιστον τέσσερις θέσεις, ή συνολικά 12 και στις δύο στροφές και να φτάσουμε το μέγιστο των 24 διαστημάτων. Οποιαδήποτε διαστήματα μεταξύ τεσσάρων και 24 μπορούν επίσης να επιτευχθούν. Αλλά αυτά μπορούν να γίνουν με διαφορετικούς τρόπους. Για παράδειγμα, μπορούμε να μετακινήσουμε συνολικά επτά διαστήματα μετακινώντας έναν από τους παρακάτω συνδυασμούς:
- Δύο κενά στην πρώτη στροφή και πέντε κενά στη δεύτερη στροφή
- Τρία διαστήματα στην πρώτη στροφή και τέσσερα κενά στη δεύτερη στροφή
- Τέσσερα κενά στην πρώτη στροφή και τρία κενά στη δεύτερη στροφή
- Πέντε διαστήματα στην πρώτη στροφή και δύο κενά στη δεύτερη στροφή
Πρέπει να εξετάσουμε όλες αυτές τις δυνατότητες κατά τον υπολογισμό των πιθανοτήτων. Κάθε βολή είναι ανεξάρτητη από την επόμενη βολή. Επομένως δεν χρειάζεται να ανησυχούμε υποθετική πιθανότητα, αλλά απλά πρέπει να πολλαπλασιάσετε κάθε πιθανότητα:
- Η πιθανότητα κύλισης δύο και στη συνέχεια πέντε είναι (1/36) x (4/36) = 4/1296.
- Η πιθανότητα κύλισης τριών και έπειτα τεσσάρων είναι (2/36) x (3/36) = 6/1296.
- Η πιθανότητα κύλισης τεσσάρων και στη συνέχεια τριών είναι (3/36) x (2/36) = 6/1296.
- Η πιθανότητα κύλισης πέντε και στη συνέχεια δύο είναι (4/36) x (1/36) = 4/1296.
Ενιαίος αποκλειστικός κανόνας προσθήκης
Άλλες πιθανότητες για δύο στροφές υπολογίζονται με τον ίδιο τρόπο. Για κάθε περίπτωση, πρέπει απλώς να υπολογίσουμε όλους τους πιθανούς τρόπους για να αποκτήσουμε ένα συνολικό ποσό που αντιστοιχεί σε αυτό το τετράγωνο του πίνακα παιχνιδιών. Ακολουθούν οι πιθανότητες (στρογγυλοποιημένες στο πλησιέστερο εκατοστό του ποσοστού) προσγείωσης στους ακόλουθους χώρους στην πρώτη στροφή:
- Φόρος εισοδήματος - 0,08%
- Αναγνώσεις σιδηροδρόμων - 0,31%
- Oriental Avenue - 0,77%
- Ευκαιρία - 1.54%
- Λεωφόρος Βερμόντ - 2,70%
- Φόρος του Κοννέκτικατ - 4,32%
- Απλά Επισκεφτείτε τη φυλακή - 6,17%
- St. James Place - 8,02%
- Ηλεκτρική Εταιρεία - 9,65%
- Avenue States - 10.80%
- Βιρτζίνια - 11.27%
- Pennsylvania Railroad - 10.80%
- St. James Place - 9,65%
- Κοινοτικό στήθος - 8,02%
- Λεωφόρος Τενεσί 6.17%
- Νέα Υόρκη Λεωφόρος 4.32%
- Δωρεάν στάθμευση - 2,70%
- Λεωφόρος Κεντάκυ - 1,54%
- Ευκαιρία - 0,77%
- Λεωφόρος Ιντιάνα - 0,31%
- Λεωφόρος Ιλινόις - 0,08%
Περισσότεροι από τρεις στροφές
Για περισσότερες στροφές, η κατάσταση γίνεται ακόμα πιο δύσκολη. Ένας λόγος είναι ότι στους κανόνες του παιχνιδιού, εάν πετάξουμε διπλός τρεις φορές στη σειρά, πηγαίνουμε στη φυλακή. Αυτός ο κανόνας θα επηρεάσει τις πιθανότητές μας με τρόπους που δεν έπρεπε να εξετάσουμε προηγουμένως. Εκτός από αυτόν τον κανόνα, υπάρχουν επιπτώσεις από τις πιθανές και κοινοτικές κάρτες στο στήθος που δεν εξετάζουμε. Ορισμένες από αυτές τις κάρτες κατευθύνουν τους παίκτες να παραλείπουν χώρους και να πηγαίνουν κατευθείαν σε συγκεκριμένους χώρους.
Λόγω της αυξημένης υπολογιστικής πολυπλοκότητας, γίνεται ευκολότερο να υπολογιστούν οι πιθανότητες για περισσότερο από λίγες περιστροφές χρησιμοποιώντας μεθόδους Monte Carlo. Οι υπολογιστές μπορούν να προσομοιώσουν εκατοντάδες χιλιάδες, αν όχι εκατομμύρια παιχνίδια Monopoly, και οι πιθανότητες προσγείωσης σε κάθε χώρο μπορούν να υπολογιστούν εμπειρικά από αυτά τα παιχνίδια.